Module-1.Ordinary Differential Equation

Dr. Chandra Shekher Singh

Department of Basic Science UPTTI,
Kanpur-208001, India

Branch-TT,TE , Apr. 05, 2020-SEM-II

Outline of the Presentation

- Variation of Parameters
- Working rule for Solving $\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=R$ by Variation of Parameters, where P, Q and R are functions of x or Constants.
- Based Examples
- Based Questions

Variation of Parameters

Module-

1. Ordinary Differential Equation

Definition

The Wornskian of n functions $y_{1}(x), y_{2}(x), \ldots, y_{n}(x)$ is denoted by $W\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ and is defined to be the dterminant

$$
W\left(y_{1}, y_{2}, \ldots, y_{n}\right)=W(x)=\left|\begin{array}{ccccc}
1 & y_{1}^{\prime}(x) & y_{2}^{\prime}(x) & \ldots & y_{n}^{\prime}(x) \\
1 & y_{1}^{\prime}(x) & y_{2}^{\prime}(x) & \ldots & y_{n}^{\prime}(x) \\
\ldots & \ldots & \ldots & \ldots \ldots \ldots . . & \ldots . . \\
1 & y_{1}^{\prime}(x) & y_{2}^{\prime}(x) & \ldots & y_{n}^{\prime}(x)
\end{array}\right| .
$$

Examples

(1) (Example-1) Consider the two function $f_{1}(x)=x^{3}$ and $f_{2}(x)=x^{2}$, find Wronskian i.e, $W\left(f_{1}, f_{2}\right)$ (The solution is given below).
(2) (Example-2) Consider the two function $f_{1}(x)=\sin (x)$ and $f_{2}(x)=\cos (x)$, find Wronskian i.e, $W\left(f_{1}, f_{2}\right)$ (The

Variation of Parameters

Module-
1.Ordinary Differential Equation

Definition

Variation of Parameters: Variation of Parameters is a method for producing a particular solution to an nonhomogeneous equation by exploiting the (Usually much simpler to find) solutions to the associated homogeneous equation.

Working Procedure for solving

$$
\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=R
$$

by Variation of Parameters, where P, Q and R are functions of x or Constants.
Step-1: Re-write the given equation as

$$
y_{2}+P y_{1}+Q y=R
$$

Module1.Ordinary Differential Equation

Step-2:

$$
\begin{equation*}
y_{2}+P y_{1}+Q y=0 \tag{2}
\end{equation*}
$$

which is obtained by taking $R=0$ in (1). Solve (2) by method of previous chapter as the case may be. Let the general solution of (2) i.e., C.F. of (1) be

$$
\begin{equation*}
y=C_{1} u+C_{2} v \tag{3}
\end{equation*}
$$

where, C_{1}, C_{2} being arbitrary constants.
Step-3: General solution of (1) is

$$
y=C . F .+P . I .
$$

Module1.Ordinary Differential Equation

Variation of Parameters
where,

$$
\begin{equation*}
C . F .=C_{1} u+C_{2} v . \tag{5}
\end{equation*}
$$

, C_{1}, C_{2} being arbitrary constants. and

$$
\text { P.I. }=u f(x)+v g(x) .
$$

(6)
where,

$$
\begin{equation*}
\mathrm{f}(\mathrm{x})=-\int \frac{v R}{W} d x \text { and } g(x)=\int \frac{u R}{W} d x \tag{7}
\end{equation*}
$$

where, dterminant

$$
W(u, v)=\left|\begin{array}{cc}
u & v \\
u^{\prime} & v^{\prime}
\end{array}\right|
$$

Dr. Chandra Shekher Singh

Module1.Ordinary Differential Equation Parameters

Apply the method of variation of parameters to solve

Examples

(1) (Example-1) $x^{2} y_{2}+3 x y_{1}+y=\frac{1}{(1-x)^{2}}$ (The solution is given below).
(2) (Example-2) $x^{2} y_{2}+x y_{1}-y=x^{2} \log x$ (Do it yourself).

Example.1. Consider the two functions $f_{1}(x)=x^{3}$ and $f_{2}(x)=x^{2}$, find Wronskian it; $W\left(f_{1}, f_{2}\right)$.

Sol:- Given that

$$
\begin{aligned}
& \text { Given that } \\
& f_{1}(x)=x^{3} \text {, and } f_{2}(x)=x^{2}
\end{aligned}
$$

we have

$$
\begin{aligned}
& \text { have } \\
& \begin{aligned}
W\left(f_{1}, f_{2}\right) & =\left|\begin{array}{ll}
f_{1}(x) & f_{2}(x) \\
\frac{d}{d x} f_{1}(x) & \frac{d}{d x} f_{2}(x)
\end{array}\right|=\left|\begin{array}{cc}
x^{3} & x^{2} \\
3 x^{2} & 2 x
\end{array}\right| \\
& =f_{1}(x) \cdot \frac{d}{d x} f_{2}(x)-f_{2}(x) \frac{d}{d x} f_{1}(x) \\
& =x^{3} \cdot 2 x-x^{2} \cdot 3 x^{2} \\
& =2 x^{4}-3 x^{4}=-x^{4}
\end{aligned}
\end{aligned}
$$

Example 2. Consider the two function $f_{1}(x)=\sin x$ and $f_{2}(x)=\cos x$, find Wronskian i.e, $W\left(f_{1}, f_{2}\right)$.
$801^{h} \div$

$$
\text { (2) Wronskian } \begin{aligned}
& W\left(f_{1}, f_{2}\right) \\
&=\left|\begin{array}{cc}
f_{1} & f_{2} \\
f_{1}^{\prime} & f_{2}^{\prime}
\end{array}\right| \\
&=\left|\begin{array}{cc}
\sin x & \cos x \\
\cos x & -\sin x
\end{array}\right| \\
&=-\sin ^{2} x-\cos ^{2} x=-1 \# .
\end{aligned}
$$

Apply the method of Variation of Parameters Solve
(i) $x^{2} y_{2}+3 x y_{1}+y=\frac{1}{(1-x)^{2}}$.
(ii) $x^{2} y_{2}+x y_{1}-y=x^{2} \log x$.

Sol ${ }^{n}$ -
(i) Step 1. the coefficient of highest order must be unity. ie, coefficient of y_{2} must be unity.

So, $\quad y_{2}+\frac{3}{x} y_{1}+\frac{1}{x^{2}} y=\frac{1}{x^{2}(1-x)^{2}}$
where $P=\frac{3}{x}, Q=\frac{1}{x^{2}}, R=\frac{1}{x^{2}(1-x)^{2}}$
consider,

$$
\begin{aligned}
& y_{2}+\frac{3}{x} y_{1}+\frac{1}{x^{2}} y=0 \\
& \text { ie, } x^{2} y_{2}+3 x y_{1}+y=0 \\
& \text { z } 2 y_{2}=
\end{aligned}
$$

let $x=e^{2} \rightarrow x=\log _{e} x, x^{2} y_{2}=D(D-1)$

$$
x y_{1}=D
$$

$A \cdot E$ is

$$
\text { is } \begin{aligned}
f(D) & =0 \\
\text { ie, } f(m) & =0
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & m(m-1)+3 m+1=0 \\
& \Rightarrow(m+1)^{2}=0 \Rightarrow m=-1,-1 \\
C \cdot F \cdot & \left(c_{1}+z c_{2}\right) e^{-z} \\
& =c_{1} e^{-2}+c_{2} z e^{-2} \\
& =c_{1} x^{-1}+c_{2} x^{-1} \log _{e} x
\end{aligned}
$$

Q, C_{1} and C_{2} are arbitral constants.
let $u=x^{-1}, v=x^{-1} \log _{e} x, \quad R=x^{-2}(1-x)^{-1}$

$$
\begin{aligned}
& W(u, v)=\left|\begin{array}{cc}
x^{-1} & x^{-1} \log _{e} x \\
-x^{-2} & x^{-2}-x^{-2} \log x
\end{array}\right| \\
& \text { i.e, } \\
& W(u, v)=\left|\begin{array}{cc}
x^{-1} & x^{-1} \log _{e} x \\
\frac{d}{d x} x^{-1} & \frac{d}{d x}\left(x^{-1} \log _{x}\right)
\end{array}\right|=x^{-3} \neq 0 .
\end{aligned}
$$

$$
\begin{aligned}
P \cdot I . & =u \cdot f(x)+v g(x) \\
\text { Where } f(x) & =-\int \frac{v R}{W} d x \\
& =-\int \frac{x^{-x} \log x \cdot x^{-x}(1-x)^{-2}}{x^{-3}} d x \\
& =-\int(1-x)^{-2} \log x d x \\
& =-\left[\frac{1}{1-x} \log x-\int \frac{1}{x(1-x)} d x\right] I . \\
& =-\frac{\log x}{1-x}+\int\left(\frac{1}{x}-\frac{1}{1-x}\right) d x \\
& =\frac{-\log x}{1-x}+\log x-\log (1-x) \\
& =-(1-x)^{-1} \log x+\log x-\log (1-x) \\
g(x) & =\int \frac{4 R}{W} d x .
\end{aligned}
$$

$$
\begin{aligned}
g(x)= & \int \frac{x^{-1} x^{-2}(1-x)^{-2}}{x^{-3}} d x \\
= & (1-x)^{-1} \\
\text { P.I. }= & U \cdot f(x)+V \cdot g(x) \\
= & x^{-1}\left\{-(1-x)^{-1} \log x+\log x-\log (1-x)\right\} \\
& +x^{-1} \log x(1-x)^{-1} \\
= & x^{-1} \log x-x^{-1} \log (1-x) \\
= & x^{-1}\left[\log \frac{x}{1-x}\right]
\end{aligned}
$$

Hence the general solution of given different i equation is.

$$
\begin{aligned}
& y(x)=C \cdot F+P \cdot I . \\
& =c_{1} x^{-1}+c_{2} x^{-1} \log x+x^{-1} \log \left\{\frac{x}{1-x}\right\}
\end{aligned}
$$

