UTTAR PRADESH TEXTILE TECHNOLOGY INSTITUTE

Department of Engineering

Semester: 4th

Subject: Material Science

Faculty: Arpit Srivastava

Date: 21/4/2020

Topic covered:

Basic about crystal material

What is **crystalline material**?

 A crystalline material is one in which the atoms are situated in a repeating or periodic array over large atomic distances; that is, longrange order exists, such that upon solidification, the atoms will position themselves in a repetitive three-dimensional pattern, in which each atom is bonded to its nearest-neighbor atoms.

What is **crystalline material**?

 All metals, many ceramic materials, and certain polymers form crystalline structures under normal solidification conditions. For those that do not crystallize, this long-range atomic order is absent; these noncrystalline or amorphous materials

What is **Crystal Structure**?

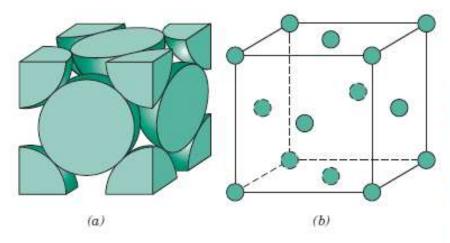


Figure 3.1 For the facecentered cubic crystal structure, (a) a hardsphere unit cell representation, (b) a reduced-sphere unit cell, and (c) an aggregate of many atoms. [Figure (c) adapted from W. G. Moffatt, G. W. Pearsall, and J. Wulff, The Structure and Properties of Materials, Vol. I, Structure, p. 51. Copyright @ 1964 by John Wiley & Sons, New York. Reprinted by permission of John Wiley & Sons, Inc.]

What is **Unit Cell**?

- The atomic order in crystalline solids indicates that small groups of atoms form a repetitive pattern.
- Thus, in describing crystal structures, it is often convenient to subdivide the structure into small repeat entities called unit cells.

Crystal System

Table 3.2 Lattice Parameter Relationships and Figures Showing Unit Cell Geometries for the Seven Crystal Systems

Crystal System	Axial Relationships	Interaxial Angles	Unit Cell Geometry
Cubic	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$	
Hexagonal	$a = b \neq c$	$\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$	
Totragonal	$a = b \neq c$	$\alpha = \beta = \gamma = 90$	2 2 1
Rhombohedral (Trigonal)	a = b = c	$\alpha = \beta = \gamma \neq 90^{\circ}$	A. D.
Orthorhombic	$a \neq b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$	E 10 10 10 10 10 10 10 10 10 10 10 10 10
Monoclinic	$a \neq b \neq c$	$\alpha = \gamma = 90^{\circ} \neq \beta$	
Triclinic	· ·	a (Assistant Professor) UPTTI,	

Crystal System

Table 3.2 Lattice Parameter Relationships and Figures Showing Unit Cell Geometries for the Seven Crystal Systems

Crystal System	Axial Relationships	Interaxial Angles	Unit Cell Geometry
Cubic	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$	
Hexagonal	$a = b \neq c$	$\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$	
Totragonal	$a = b \neq c$	$\alpha = \beta = \gamma = 90$	2 2 1
Rhombohedral (Trigonal)	a = b = c	$\alpha = \beta = \gamma \neq 90^{\circ}$	A. D.
Orthorhombic	$a \neq b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$	E 10 10 10 10 10 10 10 10 10 10 10 10 10
Monoclinic	$a \neq b \neq c$	$\alpha = \gamma = 90^{\circ} \neq \beta$	
Triclinic	· ·	a (Assistant Professor) UPTTI,	

Imperfection in solids

 Thus far it has been tacitly assumed that perfect order exists throughout crystalline materials on an atomic scale. However, such an idealized solid does not exist; all contain large numbers of various defects or imperfections

Imperfection in solids

- Thus far it has been tacitly assumed that perfect order exists throughout crystalline materials on an atomic scale. However, such an idealized solid does not exist; all contain large numbers of various defects or imperfections
- Crystalline defect refers to a lattice irregularity having one or more of its dimensions on the order of an atomic diameter.

Imperfection in solids

- Point Defect
 - 1. VACANCIES AND SELF-INTERSTITIALS
- DISLOCATIONS—LINEAR DEFECTS
- INTERFACIAL DEFECTS
- BULK OR VOLUME DEFECTS
- (Once read these topics from ref book ask if needed)