Quiz (AC Circuits-II)

*Required

1. Email address *
2. Name *
\qquad
3. Branch *

Mark only one oval.TCMMFT
4. Roll No *
\qquad
5. Mobile No
6. An ac circuit consists of a pure resistance of 20 ohm and is connected to an ac supply of $282.84 \operatorname{Sin} 314 t$ Calculate the (i) current (ii) power consumed (iii) equation for current and (iv) frequency of supply

Mark only one oval.$10 \mathrm{~A}, 2 \mathrm{~kW}, 14.44 \operatorname{Sin}(314 \mathrm{t}-\pi / 2), 50 \mathrm{~Hz}$10A, 2kW, 14.44 Sin314t, 50 Hz5A, 1450W, 14.44 Sin314t, 50 Hz10A, 2000W, 282.84 Sin314t, 50 Hz
7. In an ac circuit consists of a pure Inductor the expression for instantaneous power is *

Mark only one oval.

$$
p=\frac{V_{m} I_{m}}{2} \sin 2 \omega t
$$

Option 1
Option 2

$$
p=\frac{V_{m} I_{m}}{2} \cos \Phi-\frac{V_{m} I_{m}}{2} \cos (2 \omega t-\Phi)
$$

$$
p=\frac{V_{m} I_{m}}{2} \cos \Phi+\frac{V_{m} I_{m}}{2} \cos (2 \omega t-\Phi)
$$

8. In an ac circuit consists of a pure Capacitor the expression for instantaneous 1 point power is *

Mark only one oval.

Option 1
Option 2

\square Option 4
9. In an ac circuit consists of a Resistance and a Capacitor the expression for instantaneous power is *

Mark only one oval.

Option 1
Option 2

$$
p=\frac{V_{m} I_{m}}{2} \cos \Phi-\frac{V_{m} I_{m}}{2} \cos (2 \omega t-\Phi)
$$

$$
p=\frac{V_{m} I_{m}}{2} \cos \Phi+\frac{V_{m} I_{m}}{2} \cos (2 \omega t-\Phi)
$$Option 3Option 4

10. The complex Volt Amperes in a series circuit are (4330-j2500) and the current is $(25+j 43.3)$ A. The applied voltage is: *

Mark only one oval.$25+j 43.3$
\square 433-j25086.6+j50None of the above
11. A non inductive resistor of 10 ohm is in series with a capacitor of $100 \mu \mathrm{~F}$ across a $250 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply. the current taken by the capacitor and power factor of the circuit *

Mark only one oval.25+j43.3433-j25086.6+j50None of the above
12. A non inductive resistor of 10 ohm is in series with a capacitor of $100 \mu \mathrm{~F}$ across a $250 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply. the current taken by the capacitor and power factor of the circuit *

Mark only one oval.$7.49 \angle 72.5$ degree A, 0.32.24+j7.14, Cos 72.5 degreeBoth AboveNone of the above
13. An impedance coil in parallel with a $100 \mu \mathrm{~F}$ capacitor is connected across a $200 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. The coil takes a current of 4 A and the power loss in the coil is 600 W . the inductance of the coil will be: *

Mark only one oval.
\square 0.2 H0.0105 H0.105 HNone of the above
14. An impedance coil in parallel with a $100 \mu \mathrm{~F}$ capacitor is connected across a $200 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. The coil takes a current of 4 A and the power loss in the coil is 600 W . the power factor of the circuit is *

Mark only one oval.0.63650.60100.59920.3656
15. In power triangle, P, Q and S are Respectively: * Mark only one oval.Active Power(W), Reactive Power(VA), Apparent Power(VAR)Active Power(W), Reactive Power(VAR), Apparent Power(VA)Apparent Power(VA), Active Power(W), Reactive Power(VAR),Apparent Power(VAR), Active Power(W), Reactive Power(VA),

