Assessment Quiz 2 (Single Phase AC)

MCQ questions single answer Type
*Required

1. Email address *
2. Name *
3. Semester *

Mark only one oval.1
\square 2
4. Roll No *
5. Branch *

Mark only one oval.TCMMFT
6. Consider a rectangular coil of 50 turns placed in a Uniform Magnetic Field .

The component of Flux acting perpendicular to the plane of the coil i.e. $\Phi \mathrm{m}=$ 0.03 cos ωt induces an emf in the coil e =Em Sinct. If frequency of rotation of coil is 50 Hz , the Value of Maximum Induced Voltage will be *

Mark only one oval.75 V471 V440 V220 V
7. An alternating Current through resistor of 50 ohm is given by $\mathrm{i}=30 \sin$ $314 t$.The rms value of Voltage across resistance will be: *

Mark only one oval.
\square $1500 / \sqrt{ } 2$$1500 \sqrt{ } 2$$30 \sin 314 t \times 50$$30 \sin 314 t / 50$Other: \qquad
8. An alternating Voltage is given by $v=310 \sin 314 t$. The Maximum value, Frequency, Time Period and instantaneous value when $t=3 \mathrm{~ms}$, will be as * Mark only one oval.
\square $250.71 \mathrm{~V}, 50 \mathrm{~Hz}, 0.02 \mathrm{~s}, 310 \mathrm{~V}$$220 \mathrm{~V}, 50 \mathrm{~Hz}, 0.02 \mathrm{~s}, 250.71 \mathrm{~V}$310 V, 314 Hz, 0.003s, 250.71V$310 \mathrm{~V}, 50 \mathrm{~Hz}, 0.02 \mathrm{~s}, 250.71 \mathrm{~V}$
9. Form Factor and peak factor of current Sinusoidal wave are given by the expressions respectively as: *

Mark only one oval.Irms/Iav, Im/IrmsIav/Irms, Im/IrmsIm/Irms, Irms/IavIm/Irms, Iav/Irms
10. In the figure which statement is true? *

Mark only one oval.
\square V is lagging behind I by 30 degreesV is leading I by 30 degreesV and I are in same phase
\square None of the above is correct
11. In the figure The equation of Voltage is $v=\mathrm{Vm}$ Sinct. The equation of Current 1 point will be *

Mark only one oval.

\square $i=\operatorname{Im} \operatorname{Sin} \omega t$$i=\operatorname{Im} \operatorname{Sin}(\omega t-\pi / 6)$
\square $i=\operatorname{Im} \operatorname{Sin}(\omega t+\pi / 6)$
\qquad $i=\operatorname{Im} \operatorname{Cos}(\omega t)$
12. In the figure If the Voltage and Current are associated with an inductive load Z, the Power Factor will be: *

Mark only one oval.
\square 0.8661.00.982
\square $\cos (\pi / 3)$
13. An ac resistive circuit consists of a resistance of 10 ohm and is connected to 2 points an ac supply of $230 \mathrm{~V}, 50 \mathrm{~Hz}$. the (i) current (ii) power consumed and (iii) equations for voltage and current are *

Mark only one oval.2.3A, 529 W, 325.27 Sin314t, 32.53 Sin31423 A, 529 W, 32.527 Sin314t, 325.27 Sin3142.3 A, 5.29kW, 325.27 Sin314t, 32.53 Sin314$23 \mathrm{~A}, 5.29 \mathrm{~kW}, 325.27 \operatorname{Sin} 314 \mathrm{t}, 32.53 \operatorname{Sin} 314 \mathrm{t}$
14. The incorrect statement is: *

Mark only one oval.
\qquad AC voltages can be efficiently stepped up/down using transformerAC motors are cheaper and simpler in construction than DC motorsThe Form Factor of AC sinusoidal wave is 1.414Switchgear for AC system is simpler than DC system
15. Instantaneous Power in a resistor in a pure resistive circuit is given by product of *

Mark only one oval.
\square instantaneous Voltage and RMS CurrentInstantaneous Current and RMS VoltageAverage Voltage and Average currentInstantaneous voltage and Instantaneous current

